

Methods for Calibration of Prout-
Tompkins Kinetics Parameters
Using EZM Iteration and GLO

A. P. Wemhoff
A. K. Burnham

UCRL-TR-225940

This work was performed under the auspices of the U. S. Department of Energy by
the University of California, Lawrence Livermore National Laboratory, under
Contract No. W-7405-Eng-48.

Approved for public release; further dissemination is unlimited.

November 8, 2006

 UCRL-TR-225940

2

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise, does
not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
Government or the University of California, and shall not be used for advertising or
product endorsement purposes.

 UCRL-TR-225940

3

Abstract

This document contains information regarding the standard procedures used to calibrate
chemical kinetics parameters for the extended Prout-Tompkins model to match
experimental data. Two methods for calibration are mentioned: EZM calibration and
GLO calibration. EZM calibration matches kinetics parameters to three data points,
while GLO calibration slightly adjusts kinetic parameters to match multiple points.
Information is provided regarding the theoretical approach and application procedure for
both of these calibration algorithms. It is recommended that for the calibration process,
the user begin with EZM calibration to provide a good estimate, and then fine-tune the
parameters using GLO. Two examples have been provided to guide the reader through a
general calibrating process.

 UCRL-TR-225940

4

Table of Contents

 About the Extended Prout-Tompkins Model.. 5

 Background of the EZM and GLO Calibration Methods 7

 Single-Parameter - Single Point Iterative Calibration 8

 Coupled erx-zrx Two Point Iterative Calibration.................................... 13

 EZM Three Point Iterative Calibration ... 14

 GLO Calibration .. 16

 Running the Calibration Codes .. 18

 Performing a Point-by-Point EZM Calibration 23

 Performing a GLO Calibration... 24

 Running a Set of Sequential Runs with the Same Kinetic Parameters..... 25

 Examples... 26

 Example 1: Two-Point Calibration... 26

 Example 2: Three-Point Calibration... 29

 References... 32

 UCRL-TR-225940

5

About the Extended Prout-Tompkins Model
A simple, universal, and functionally accurate kinetics model of the thermal
decomposition of various explosives would save computational resources for the
incorporation of non-traditional explosives into large-scale cookoff simulations.
Wemhoff and Burnham [1] have explored substituting a sequential reaction process by a
single reaction model that incorporates aspects of nucleation and propagation: the
extended Prout-Tompkins model [2],

 ())1(1 qxkqxkx
dt

dx mn
!!=!!= (1)

where x is the fraction remaining of reactant, t is time, and

!

k T() = Aexp "
E

RT

$
%

&

'
((2)

where A is the frequency factor in units of reciprocal time and E is the activation energy
in units of energy per mole. In this document, for clarity we introduce the parameter p,

!

p = "log10 1" q() (3a)

which may also be solved for q as

!

q =1"10
"p (3b)

which contains the property that if p contains no nonzero values after the decimal point,
then it is identical to the number of 9's after the decimal point for q. For example, for q =
0.9999, p = 4.0.

In order to use the above kinetics model, Wemhoff and Burnham [1] explored the effects
of adjusting the various parameters on the time to explosion for the ODTX experiment.
Therefore, several test runs of RDX were performed to determine the effect of varying
these parameters. In these runs, the parameters E/R and A were maintained at 20000 K
and 1×1015 per sec, respectively, except in a single case where A was adjusted to match
the highest temperature data point between curves for n = 0, m = 1 and n = 0, m = 0. The
two extreme values of p were used in Figures 1a and 1b (2 and 9, respectively), where
any value of q less than 2 is unphysical per the Prout-Tompkins approximation (see [1]),
while any value higher than 9 is read as q = 1 into ALE3D, which causes no reaction to
proceed per Eq. (1). The values of n used were 0.0 and 1.0, while the values of m used
were 0.0, 0.5 and 1.0. These curves suggest the following:

• Increasing the parameter p tends to flatten out the ODTX trend and generally
increases the time to explosion (i.e. it shifts the curve upwards).

 UCRL-TR-225940

6

• Increasing the parameter m also tends to flatten out the curve and shifts it upward
in a manner similar to increasing p, although the value of m has a more
pronounced effect on the location of the bend in the curve.

• Increasing the parameter n has very little effect on the calculation except near the
critical temperature.

 FIGURE 1a. Simulated ODTX trends for RDX for p = 9. Value of
 adjusted frequency factor for open triangles is 1.04×1018 per sec.

 UCRL-TR-225940

7

 FIGURE 1b. Simulated ODTX trends for RDX for p = 2. Value of
 adjusted frequency factor for open triangles is 5.70×1016 per sec.

Background of The EZM and GLO Calibration Methods
The general knowledge of the characteristics of varying these parameters allows for the
choice of calibration techniques for a given explosive. For example, Figure 1a shows that
the curvature of the ODTX curve reduces as p increases. In addition, Figure 1b shows
that the choice of m has a large influence on the location of the bend in the ODTX curve.
Therefore, knowledge of the calibration data allows for two general approaches for
calibration:

• If the experimental data appear in an approximately straight line, then set the
value of p to its highest allowable value (generally 9) after the decimal point, n =
0, and m = 1. A and E are the primary parameters optimized. The initial use of n
= 0 is preferred for numerical stability.

 UCRL-TR-225940

8

• If the experimental data contain a large increase in explosion times at low
temperatures, then set the value of p to a lower number (generally 3) and adjust
the values of A, E, and m accordingly to create the bend in the simulated curve.

The approach for each explosive generally falls under one of the two above strategies.
The dependence on n is sufficiently weak that it may be optimized in a final fine-tuning
to match low-temperature data if necessary. However, ODTX data is usually insufficient
to constrain n, and its value is probably best determined by independent evidence.
Thermal analysis data supports n values closer to unity. Better guidance is a matter of
current research.

The first step in calibration is to determine representative data points for use in the
simulations. The LLNL Explosives Guide [3] provides experimental ODTX results for a
wide variety of explosives and temperatures. Generally, one or several of these data
points are used for a given calibration technique, and the choice of data points should
provide a reasonable approximation of the explosion time-temperature curve.

There are several approaches for calibrating the parameters in Eq. (1) to match ODTX
data. These calibration techniques are now described, ranging from simplest to most
complex. The increase in complexity in the iterative calibration techniques is meant to
follow an increase in usefulness of the techniques for attaining accurate parameters. In
ALE3D, the Prout-Tompkins reaction is generally input as

!

k xs,T() = exp zrx "
erx

RT

$
%

&

'
(x

n
1" qx()

m (4)

where erx = E in cal/mol, and

!

zrx = ln 10"6A s"1[]() . It should be noted that the parameter
rhopow = 1 - m - n is used to convert the Prout-Tompkins reaction from the default mass
concentration basis to a mass fraction basis in ALE3D. The only reaction considered in
this study is the direct decomposition of solid material to gaseous products, and therefore
melting was not taken into account. Therefore, the parameters to be calibrated are zrx,
erx, m, n, and q.

Single Parameter - Single Point Iterative Calibration
This algorithm allows the user to calibrate the parameters in ALE3D by adjusting a single
kinetics parameter to match results for a single datum. In this simple program, the user
inputs the following variables:

• parameter to be optimized
• goal time in seconds
• maximum number of iterations
• minimum and maximum parameter value
• run temperature
• convergence tolerance
• parameter adjustment algorithm

 UCRL-TR-225940

9

The code first checks that the goal may be reached by determining explosion times for
the minimum and maximum parameter values. If the goal lies between these calculated
explosion times, then calibration is possible. An example is shown schematically in
Figure 2, where the time-to-explosion t increases as the parameter m increases, and the
time-to-explosion goal tgoal is found to exist for a parameter value in the range mmin < m <
mmax, assuming that there exists only one value of t for a given m. Note that the
descriptors min and max refer to the parameter m only; i.e. the value of tmax may be lower
than tmin if the general slope of the curve is negative.

 FIGURE 2. Schematic of example relationship between m and t.

The code attempts to calibrate the parameter in two ways. These procedures are repeated
until either the maximum number of iterations or the convergence criterion has been met.
The linear interpolation algorithm is the default method for all iterative calibration
techniques.

• Simple bracketing: if none or only one of the calculated times-to-explosion are
known for the edges of the bracketing window, then the new parameter value is at
the center of the bracketing window as shown in Figure 3, and mathematically by

!

m
new

=
1

2
m
min

+ m
max() (11)

mmin mmax

tgoal

t

m mideal

tmin

tmax

 UCRL-TR-225940

10

For each iteration, the algorithm also replaces the value of either mmin or mmax
based upon the calculated value of t, which reduces the bracketing window by
one-half during each iteration.

 FIGURE 3. Simple bracketing algorithm schematic.

• Linear interpolation: if both calculated times-to-explosion are known at the edges

of the bracketing window, then the new parameter value is found using linear
interpolation as shown in Figure 4. The updated value is found by

!

mnew = m
min

+ m
max

"m
min()

tgoal " tmin()
t
max

" t
min()

 (12)

mmin mmax

tgoal

t

m mideal
m2 m1

t1

t2

tmin

tmax

 UCRL-TR-225940

11

 FIGURE 4. Linear interpolation method schematic.

• Shifted linear interpolation: this algorithm provides a modification to the standard
linear interpolation algorithm to take curvature effects into account. An example
of this is shown in Figure 5, where the large curvature of the time curve shifts the
value of m2 from m2L to m2P. This algorithm is only implemented when the
calculated time is far from the goal and when no shifting had taken place the
previous time step. An applied relaxation factor continually updates after each
shifting step to increase accuracy. Table 1 shows that studies of this algorithm
have shown significant reduction in the required number of iterations compared to
where no shifting was applied when the curvature of the dependent variable curve
is large.

mmin mmax

tgoal

t

m

mideal
m2 m1

t1

t2

tmin

tmax

 UCRL-TR-225940

12

 FIGURE 5. Shifted linear interpolation method schematic.

TABLE 1. Comparison of convergence efficiency from application of shifting
algorithm. The range for all equations is 0.1<x<5.0, the goal is 15.0, and the
 convergence tolerance is 1%.

Steps Required for Convergence Equation

!

t = f m() Linear Interpolation
Without Shifting

Linear Interpolation with
Shifting

!

t = exp m() 23 6

!

t = m
2 5 5

!

t = m
3 15 7

!

t =1000exp "m() 67 8

!

t =100ln 1+ m() 5 4

mmin mmax

tgoal

t

m

mideal
m2L m1

t1

t2

m2P

tmin

tmax

 UCRL-TR-225940

13

Coupled erx-zrx Two Point Iterative Calibration
The single parameter-single point iterative calibration tool assumes no coupling between
the parameters. However, the compensation relationship between the parameters erx and
zrx allow for coupling by using two data points. The rationale for this may be seen in
Equation (4), where the rate of reaction may be expressed as

!

k x,T() = kc T()xn 1" qx()
m (5)

where

!

k
c
T() = exp zrx "

erx

RT

$
%

&

'
((6)

This algorithm performs two steps. First, any parameter (although generally either erx or
zrx is chosen) is adjusted for a single temperature Tc using the aforementioned single
parameter-single point iterative algorithm. Then, the value of kc is determined for this
temperature using Eq. (6). Then, the single parameter-single point algorithm is repeated
at a different temperature. Preservation of kc(Tc) requires that

!

erx = RT
c
zrx " lnk

c() (7)

The resultant adjusted values of erx and zrx provide times to explosion that match two
calibration points within the convergence tolerance. Figure 6 depicts what an example
simulated curve would look like using this calibration method.

 UCRL-TR-225940

14

 FIGURE 6. Schematic of resultant calibrated curve using coupled erx-zrx
 two-point calibration.

EZM Three Point Iterative Calibration
The EZM (erx-zrx-m) three point iterative calibration algorithm is an extension of the
coupled erx-zrx two point iterative calibration to allow for additional adjustment of m for
a third data point. Figure 7 provides a depiction of how this algorithm works. At each
step, the value of m is iterated based on a calculated time for a third data point, where the
parameters erx and zrx are previously calibrated for two other points on the curve. The
resultant simulated curve passes through three calibration points as shown in Figure 8.
Although this technique is powerful, successful completion of the calibrator calls for
accurate initial values of erx, n, and q, and correct bounding limits on zrx and m.

log(t)

1000/T

simulated curve

experimental
data

calibration point

 UCRL-TR-225940

15

 FIGURE 7. EZM iterative calibration algorithm.

Adjust value of m based on
single parameter-single point
iterative calibration algorithm

Adjust value of zrx to match a
first data point using single

parameter-single point iterative
calibration

Determine values of erx and zrx
based on coupled two-point

iterative calibration algorithm for
a second temperature.

Using new values of erx and zrx,
run a simulation at a third

temperature.

Is third data
point solution
converged?

Calibration successful.

YES

NO

 UCRL-TR-225940

16

 FIGURE 8. Schematic of resultant calibrated curve using EZM calibration.

GLO Calibration
Although the EZM calibration tool provides an accurate means to calibrate parameters to
match experimental data, the algorithm is limited to only three calibration points and to
the parameters erx, zrx, and m. Use of LLNL's Global Local Optimizer (GLO) code
allows for calibration of multiple parameters for multiple calibration points. The GLO
code allows for two choices for optimization: global and local [4]. The global
optimization tool is generally used for parametric studies, while the local optimization
tool searches for local minima using the method of steepest descents. Since kinetic
parameter calibration requires a local optimization, the local optimization tool was
primarily used in this study. The input to the code is a bracketing window for all
parameters (similar to that shown in Figure 2), and initial values for each. Another input
is the Figure-of-Merit (FOM) evaluation, which was defined as

!

FOM = ln
tcalc

tgoal

"

$

%

&
'

(

)
*

+

,
-

i=1

N p

.
i

2

 (8)

where Np data points were used. For each GLO iteration, the parameters were placed in a
Perl script, which in turn spawned an ALE3D run for each of the data points, as shown in
Figure 9. The results from all ALE3D runs were stored in a text file, which was then read

log(t)

1000/T

simulated curve

experimental data

calibration point

 UCRL-TR-225940

17

for post-simulation determination of the FOM. This FOM was then fed back into GLO
for consideration of the adjustment of parameters.

 FIGURE 9. Data flow schematic for a GLO run.

The code adjusts the parameters by first determining the gradients along the FOM
surface, and then taking a Newton step using the method of steepest descents. If the
result of the Newton step yields a FOM larger than at the previous location, then a 1-d
minimization subroutine is called to determine the lowest FOM along the 1-d slice
between the points before and after the Newton step. Figure 10 shows a typical history of
the FOM value for a GLO run where two parameters are calibrated.

ALE3D

GLO

Perl script Results file

m, n, q,
erx, zrx

ALE3d
input
decks

ALE3d
output
data

FOM

Times to
explosion

1 2 3 Np

1 2 3

ALE3D ALE3D ALE3D

Np

 UCRL-TR-225940

18

 FIGURE 10. Example Figure of Merit adjustment history for a simulation where
 two parameters are calibrated.

Running the Calibration Codes
When initializing a calibration process, the first step is to make sure that the working
directory contains all the necessary files. These are:

1. PT_inputmake.pl: creates (and has the option to run) the EZM calibrator
script.

2. b-ezm_calibrator.pl: base EZM calibrator file (not used directly).
3. auto_optimizer.pl: runs either a one-parameter optimization or a coupled

erx-zrx calibration.
4. autovary_odtx.pl: runs an ODTX or STEX simulation at a specified

temperature or ramp rate.
5. b-odtx-lx10-100.in: base ALE3D input deck (not used directly).
6. b-lx10-kin_bd_v01.in: base ALE3D kinetics input deck (not used directly).
7. b-lx10-mtl_bd_v01.in: base ALE3D material input deck (not used directly).
8. cleaner: list of UNIX commands to remove unnecessary files after a calibration

run.
9. sphh.sami: Mesh used in ODTX simulations.
10. glomake.pl: Creates the GLO input file for fine-tuning of kinetic parameters.
11. auto_cleanup.pl: Cleans up directories created during a GLO run.

In
iti

al
 ru

n

G
ra

di
en

t e
va

lu
at

io
n

N
ew

to
n

st
ep

 (s
uc

ce
ss

fu
l)

G
ra

di
en

t e
va

lu
at

io
n

1-
d

m
in

im
iz

at
io

n

1-
d

m
in

im
iz

at
io

n

G
ra

di
en

t e
va

lu
at

io
n

G
ra

di
en

t e
va

lu
at

io
n

N
ew

to
n

st
ep

 (u
ns

uc
ce

ss
fu

l)

G
ra

di
en

t e
va

lu
at

io
n

G
ra

di
en

t e
va

lu
at

io
n

N
ew

to
n

st
ep

 (s
uc

ce
ss

fu
l)

 UCRL-TR-225940

19

Several other files will be created during the calibration process. Figure 11 below
sketches out how the codes create new files:

FIGURE 11. Files created during the calibration process.

The second step is to create the appropriate input decks using PT_inputmake.pl. This
script reads in the general parameters of the simulation, and creates the appropriate EZM
script setup along with the ALE3D input decks. Table 2 lists the parameters to be input
to PT_inputmake.pl. The rules for this input deck are as follows:

• Lines with parameter names must include at least one space between the name
and value.

• The parameter name must appear prior to the parameter value.
• ODTX data must include at least one space between the name and ODTX

temperature, and at least one space between the ODTX temperature and ODTX
time.

• Commented lines contain an asterisk "*" in the first column.
• Blank lines are allowed.
• Blank spaces before variable names are allowed but not required.

To run the script, type at the prompt

perl PT_inputmake.pl

and supply the appropriate command-line flags (default values in parentheses, input line
flags in brackets):

• Input file name (input.txt)[-i]
• Run the EZM calibrator automatically after creating the ALE3D input deck [-r]

User Input
File PT_inputmake.pl

ezm_calibrator.pl

READ

CREATE

odtx-lx10-100.in

lx10_kin_bd_v01.in

lx10_mtl_bd_v01.in

auto_optimzer.pl

CALL

 UCRL-TR-225940

20

• Obtain help info [-h]

TABLE 2. Input variables to PT_inputmake.pl.

Parameter Default Value(s) Description
General Material Properties

matname gen_mat Material Name
ref_density 1.0 Reference density, g/cc

solid_cv 1.e-5 Solid heat capacity at constant volume,
Mbar-cc/(g-K)

solid_cond 1.e-14 Solid thermal conductivity,
Mbar-cc/(cm-us-K)

prod_cv 1.e-5 Products heat capacity at constant volume,
Mbar-cc/(g-K)

prod_cond 5.e-15 Products thermal conductivity,
Mbar-cc/(cm-us-K)

prod_energy 1000 Energy released by reaction in cal/g
prod_coeff 0.3 Products gamma-law gas coefficient

Prout-Tompkins Calibration Parameters
pt_p 9 Prout-Tompkins parameter p = -log10(1-q)
pt_n 0 Prout-Tomkins parameter n

itmax_m 20 Maximum number of iterations over the
Prout-Tompkins parameter m

itmax_z 20 Maximum number of iterations over the
Prout-Tompkins parameter zrx

tol_m 0.01 Convergence tolerance for m
tol_z 0.01 Convergence tolerance for z

pt_mmin 0 Minimum value of m
pt_mmax 1 Maximum value of m
pt_zmin 5 Minimum value of zrx
pt_zmax 30 Maximum value of zrx

ignore_warn 0 Ignore warnings from ALE3D? = 1 for yes
verbose 0 Verbose output from the EZM calibrator?

= 1 for yes
convquit 0 Quit EZM calibrator if there's no

convergence? = 1 for yes
ALE3D Run Parameters

gen3dexe /usr/apps/ale3d/bin/gen3d Path for GEN3D executable
ale3dexe /usr/apps/ale3d/bin/ale3d Path for ALE3D executable
use_srun 0 Use SLURM (srun) to run ALE3D? = 1

for yes

 UCRL-TR-225940

21

TABLE 2. Input variables to PT_inputmake.pl (continued).
Parameter Default Value(s) Description

ODTX Data
odtx_pts 2 Number of ODTX points (2 or 3)
odtx_1 0 0 Parameter 1: ODTX temperature (°C) for

point 1
Parameter 2: ODTX time (sec) for point 1

odtx_2 0 0 Parameter 1: ODTX temperature (°C) for
point 2

Parameter 2: ODTX time (sec) for point 2
odtx_3 0 0 Parameter 1: ODTX temperature (°C) for

point 3
Parameter 2: ODTX time (sec) for point 3

Note that if odtx_pts is equal to 2, then the following occurs automatically:

• Any input for odtx_3 is ignored.
• The parameter pt_p is set to 9.
• The parameter itmax_m is set to 1.
• The parameter tol_m is set to 1.
• The parameters pt_mmin and pt_mmax are set to 1.
• The parameter pt_n is set to 0.

 A sample input deck to PT_inputmake.pl is seen below.

 UCRL-TR-225940

22

* This is a sample input deck for the PT_inputmake.pl.
* All entries here are default values and should be entered in
* B-division units, except the product energy in cal/g. Some of
* these parameters are the same as the default and thus may be
* ommitted.

 matname mymat
 ref_density 1.61
 solid_cv 1.3e-5
 solid_cond 9.5e-14
 prod_energy 1108
 prod_cv 1.1e-5
 prod_cond 7.9e-15
 prod_coef 0.279

* These are used for determining the calibration procedure.
 pt_p 3
 itmax_m 20
 itmax_z 26
 tol_m 0.2
 tol_z 0.2
 pt_mmin 0
 pt_mmax 1
 pt_n 8
 pt_zmin 1
 pt_zmax 50
 ignore_warn 1
 verbose 1
 convquit 0

* These commands are for the path of the ale3d executable &
* whether to use SLURM (srun)
 gen3dexe /usr/apps/ale3d/bin/gen3d
 ale3dexe /usr/apps/ale3d/bin/ale3d
 use_srun 0

* ODTX values should be listed as a temperature (C) and a time
* (sec). The paramter odtx_pts describes the # of pts to be fit
* to.
 odtx_pts 3
 odtx_1 255 19.8
 odtx_2 165 56916
 odtx_3 190 2828.2

Two example calibrations are provided later in this report. The code that actually
performs the calibration is ezm_calibrator.pl. The first few lines of the code
contain the input parameters provided by PT_inputmake.pl. The EZM calibration is
initiated by typing

perl ezm_calibrator.pl

 UCRL-TR-225940

23

or by adding the -r flag to the command line for PT_inputmake.pl.
If any calibration fails, then a more involved approach is needed. Any given

calibration run may not be successful for a variety of reasons, including:
• The input ranges of zrx or m are invalid.
• More iteration steps may be needed for convergence (if convquit = 1).
• An ALE3D run may list warnings in chemical or thermal convergence, causing

the calibrator to stop (if ignore_warn = 0).

The following section describes how to perform the calibration with more control

by using the "built-in" perlscripts.

Performing a Point-by-Point EZM Calibration
The ezm_calibrator.pl code acts as a manager of the perlscript
auto_optimizer.pl. The latter code calibrates the kinetics for each individual point.
To run auto_optimizer.pl, type at the command prompt

perl auto_optimizer.pl

and supply the appropriate command-line flags (default values in parentheses, input line
flags in brackets):

• Reaction name (pt_solid_to_prod)[-r]
• Name of main ALE3D input deck (odtx-lx10-100.in) [-mainf]
• Name of ALE3D kinetics input deck (lx10_kin_bd_v01.in) [-kinf]
• Parameter to be optimized (zrx)[-v]
• Temperature (205.1) [-t]
• Goal time in seconds (23.4) [-g]
• Maximum number of iterations (10)[-i]
• Minimum parameter value (5)[-low]
• Maximum parameter value (50) [-high]
• Explosion time corresponding to minimum parameter value (unknown) [-lowt]
• Explosion time corresponding to maximum parameter value (unknown) [-hight]
• Convergence tolerance (0.01) [-c]
• Pinned temperature in deg C for coupled erx-zrx calibration [-temp_pin]
• Use simple bracketing instead of linear interpolation [-simple]
• Turn off shifting in linear interpolation [-noshift]
• Maximum ALE3D step size in microseconds (105) [-stepsize]
• Apply a time limit to the ALE3D runs (2× the goal time) [-time_limit]
• Ignore warning messages option [-ignore_warn]
• Use srun (SLURM) for Linux operating systems [-use_srun]
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe]
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe]

Generally, the only command line flags commonly used for a single-parameter single-
point calibration are -r, -v, -t, -g, -low, -high, and -stepsize. The purpose of the -lowt
and -hight flags is to allow the user to "restart" the calibration procedure when the

 UCRL-TR-225940

24

optimal value for the parameter lies outside the input range. Note that the -d flag
provides the current kinetic parameters drawn from the kinetics file, and the -h flag
provides help regarding the various input flags.

Example 2 below will show how to perform this calibration.

Running auto_optimizer.pl generates the following output files in addition to the
typical ALE3D output files:

• g-mainfile-i.in, where mainfile is the main ALE3D input file, and i is the
iteration number: the modified input file for iteration i.

• optimized.res: parameter value and corresponding explosion time for each
iteration

• warnings.out: any warning messages from ALE3D that terminates the script
(deleted if empty at the end of the run)

Performing a GLO Calibration
A GLO input generator perlscript glomake.pl has been developed as an aid to the user.
This perlscript requires a base ALE3D input deck divided into three files: a main file, a
materials file, and a kinetics file. The generator copies and modifies these files into the
GLO input deck. The following is needed when running glomake.pl (default values in
parentheses, and input line flags in brackets):

• Name of reaction (pt_solid_to_prod) [-r]
• Name of main ALE3D input deck (odtx-lx10-100.in) [-mainf]
• Name of ALE3D kinetics input deck (lx10_kin_bd_v01.in) [-kinf]
• Name of ALE3D materials input deck (lx10_kin_bd_v01.in) [-mtlf]
• Name of temperature data points for calibration (datapoints.txt) [-datf]
• Name of GLO input deck to be created (out.gcf) [-o]
• Maximum number of GLO iterations (50) [-max]
• Number of cpu's to be used in a GLO run (1) [-ncpu]
• Use srun (SLURM) for Linux operating systems [-use_srun]
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe]
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe]

Multiple reactions and materials are allowed in the materials and kinetics input decks.
All changes in the kinetics input decks are applied to the specified reaction. In the data
points input, each point is read in as two columns: temperature and goal time.
Commented lines contain an asterisk (*). The same input rules for the
PT_inputmake.pl input file apply for the input to glomake.pl as well. An example
valid data points input file datapoints.txt is shown below:

 UCRL-TR-225940

25

* temp goal
300.0 12.1
285.0 24.3
260.3 65.9
250.1 571.6
240.6 2842.0

Upon completion of the deck, GLO may be run interactively using

glo out.gcf

where here out.gcf is the name of the GLO input deck, and glo is aliased to the
executable for a given machine (see the GLO user manual [4] for details). The GLO
input deck name may be set using the -o flag in glomake.pl. This code is also
commonly run in the background via

glo out.gcf >& out.out < /dev/null &

Similar command-line arguments are used for GLO restarts, and further information is
available in the GLO user manual [4].

Running a Set of Sequential Runs with the Same Kinetic Parameters
In many cases, the calibrated parameters are based on a fraction of the total available
ODTX data for a given explosive. Therefore, the user may want to compare predictions
from the calibrated model to the remaining unused ODTX data points, or verify the
accuracy of the calibrated parameters to used ODTX data points. The script
autovary_odtx.pl was created for this purpose. This simple script allows the user to
run a series of ALE3D simulations at different temperatures (or ramped boundary
conditions). Command line flags for this script are:

• Parameter to be adjusted: (temp) or ramp [-v]
• Problem geometry: (0.5sph), 1sph, 2sph, 0.02cy, 2cy, 0.02cy2D, 2cy2D, SITI [-g]
• Number of runs: (1) [-imax]
• Initial parameter value (1) [-init]
• Sequential change in parameter value (1) [-delta]
• Maximum ALE3D step size in microseconds (105) [-stepsize]
• Add delta instead of subtract delta for each subsequent run [-add]
• Keep all ALE3D files after run [-noclean]
• Ignore warning messages after run [-ignorewarn]
• Specify a time limit in seconds [-time_limit]
• Use srun (SLURM) for Linux operating systems [-use_srun]
• Specify GEN3D path (/usr/apps/ale3d/bin/gen3d) [-gen3dexe]
• Specify ALE3D path (/usr/apps/ale3d/bin/ale3d) [-ale3dexe]
• Use a list of temperatures instead of a fixed increment [-list]

 UCRL-TR-225940

26

The -list flag overrides any of the fixed-increment flags (-imax, -init, and -delta). The
user specifies the name of the file with the temperatures and goal values (exactly the
same format as the data points file mentioned for glomake.pl above). For example, if
the user types the command:

perl autovary_odtx -init 300 -delta 5 -imax 2

the script will provide 3 ALE3D simulations: at 300 C, 295 C, and 290 C. If the user
types the same command, except adds the -list flag:

perl autovary_odtx -init 300 -delta 5 -imax 2 -list
datapoints.txt

where datapoints.txt is a text file containing two columns: one for temperature and
one for the approximate time for explosion. The results from the run are summarized in
the file odtx-lx10.res.

Examples
Two examples are now provided that show how the aforementioned codes are used. The
first example shows how to calibrate for a series of ODTX data that fall in a straight line,
while the second example shows how to use the codes in detail to perform an EZM
calibration.

Example 1: Two-Point Calibration
In this example calibration, the experimental ODTX data for material ExpOne are shown
in Figure 12 below. Since the data appear in a straight line, a standard Excel fit-curve
relation to the data provides two calibration points at the two extremes of the temperature
range: (300°C, 23.4 s) and (220°C, 5739 s). Assume that the thermal properties are the
same as the default values in the input deck.

Temperature,
°C

Time, sec

300 20
290 55
280 78
270 105
260 342
250 811
240 1254
230 2600
220 5000

FIGURE 12. Example 1 explosive ODTX data.

 UCRL-TR-225940

27

Since the thermal properties are the same as default, then the input deck to
PT_inputmake.pl is very simple:

matname ExpOne
odtx_1 300 23.4
odtx_2 220 5739

Note that this example is applied on the GPS cluster (and hence no srun command is
needed) For a Linux cluster, the parameter use_srun should be set to 1. The input
decks for ALE3D and the EZM calibrator is generated using the command

perl PT_inputmake.pl -i input_ex1.txt

where input_ex1.txt is a text file containing the above 3 lines. The EZM calibrator
may then be run by typing

perl ezm_calibrator.pl

While the calibrator is running, the code will list a lot of error messages such as "No such
file or directory" or "[0] MPI Abort by user Aborting program!" These messages are to
be expected and the user should not be alarmed. After a while, the calibrator converges
on the first point (zrx ~ 12.6), and then moves on to the second point, where it converges
at (zrx = 23.0, erx = 41844). It will then re-run at the first point to check for the effect of
the new zrx and erx on the first point (the convergence is reduced from 0.01 to 0.09). At
the end of the run, the EZM calibrator output states the converged parameters (the
aforementioned erx and zrx, and m = 1). These values have been automatically updated
in the kinetics file (lx10_kin_bd_v01.in).

After the run, the calibrator has produced a large number of files that can be removed.
This is accomplished by using the cleaner by typing

source cleaner

This removes the unwanted ALE3D files. If interested, the user may look at the various
*.out files that describe the calibrator's attempt to converge for each of the three points.

A check on the calibrated kinetics curve can be produced using

perl autovary_odtx.pl -list data_ex1.txt

where data_ex1.txt is a text file containing the data table similar to that in Figure 12.
This creates simulated ODTX times for each of the experimental temperature values.
The resultant plotted simulated data are shown in Figure 13.

 UCRL-TR-225940

28

FIGURE 13. Simulated ODTX data using the EZM calibrator compared to experimental
data for the example material.

To fine-tune the kinetic parameters using GLO, type at the command prompt

perl glomake.pl -datf data_ex1.txt -o ex1.gcf
mkdir GLO
cp ex1.gcf GLO
cp sphh.sami GLO
cp auto_cleanup.pl GLO
cd GLO
glo ex1.gcf

Once GLO has finished its run, the excess files in each directory may be removed by
typing

perl auto_cleanup.pl

The GLO run has produced several directories beginning with the letter p (e.g. p0001).
To determine which directory to keep, open the ex1.u1 file and choose the iteration with
the lowest figure of merit. The directory contains the values of the kinetic parameters in
the varvals file and simulated ODTX times in the results.res file. Figure 12 shows
that GLO does not significantly change the kinetic parameters and corresponding ODTX
results for this example.

 UCRL-TR-225940

29

Example 2: Three-Point Calibration

This second example shows how to calibrate parameters when a bend exists in the data.
The data, shown below in Figure 14, show a pronounced dogleg at 1000/T = 1.95. For
this example, three ODTX points are used, and the value of p used is 2 to account for the
bend. Assume that the material properties for this explosive, ExpTwo, are the same as
the default parameters.

Temperature,
°C

Time, sec

300 20
290 35
280 50
270 60
260 80
250 150
240 300
230 1000
220 5000

FIGURE 14. Example 2 explosive ODTX data.

First, three representative data points must be chosen. Here, we choose the two extremes
of the temperature range and a point at the base of the bend. An example input for this
explosive is provided below:

matname ExpTwo

pt_p 2
ignore_warn 1

odtx_pts 3
odtx_1 300 20
odtx_2 220 5000
odtx_3 250 150

Although running the EZM calibrator will converge to a solution on its own, here we will
examine how to manually calibrate using auto_optimizer.pl. The execution of this
perlscript for the first point is as follows:

perl auto_optimizer.pl -t 300.0 -g 20 -low 5 -high 30 -stepsize
1.e5

The script opens the kinetics file and determines the reactants and products for the default
reaction pt_solid_to_prod. The external boundary temperature is set at 300°C, the
maximum time step size is set to 0.01 sec, and the parameter zrx is varied between 5 and

 UCRL-TR-225940

30

30 until the sample explodes at 20 sec (+/- 1%). The resultant calibrated value of zrx for
the first point is approximately 7.74.

The coupled erx-zrx calibration may also be implemented via this perlscript. If the above
line were used to calibrate zrx for the first point (300.0 C, 20 sec), then the coupled erx-
zrx algorithm may be implemented at a second point (220 C, 5000 sec), using the -
temp_pin flag. Update the kinetics file with the value of zrx obtained for the first point,
and then enter the following command line to calibrate erx and zrx for the second point
using the coupling at the first point:

perl auto_optimizer.pl -t 220 -g 5000 -low 5 -high 30 -stepsize
1.e7 -temp_pin 300

This tells the script to attach the pre-calibrated values of erx and zrx to the temperature
300°C, thus establishing the coupling of the two parameters using Eq. (7), which is then
implemented during each successive update to zrx. This calibrates erx and zrx to be
approximately 42,121 and 18.4, respectively.

To complete the EZM calibration, update the kinetics file with the new erx-zrx pair, and
then test the new parameters with the current value of m (m = 0 for this iteration) at the
third point. Although there are several ways to achieve this, the easiest is by running
autovary_odtx.pl at the third point temperature:

perl autovary_odtx.pl -init 250 -stepsize 1.e5 -time_limit 300

This results in an explosion time of 126 seconds for m = 0.

The user then adjusts the value of m in the kinetics file and repeats the above process
until convergence is completed for the third point. This process becomes reasonably
efficient with use of the history command at the unix prompt to re-run previous
auto_optimizer.pl calls. A good general practice is to determine the bounds of m,
update ezm_calibrator.pl, and then run the latter perl script. Repeating the above
process with m = 1 yields the values erx = 45,821, zrx = 24.9 and a time to explosion of
206 seconds at 250°C. Therefore, ezm_calibrator.pl can be updated by changing
the lines

$lowt = 126;
$hight = 206;

Running ezm_calibrator.pl leads to convergence with the following values:

• erx = 45697
• zrx = 22.6
• m = 0.3

 UCRL-TR-225940

31

Note the additional variables available using ezm_calibrator.pl compared to
auto_optimizer.pl. Here, we provided known times for the limits of m. In addition,
the user can give known calibrated values of zrx at the first point, and known calibrated
values of erx and zrx at the second point. This provides a means to save time for
restarting a calibration process. Because ezm_calibrator.pl calls
auto_optimizer.pl, the latter's output files are created, in addition to the following:

• opt-i-zrx.out, where i is an integer: output from the auto_optimizer call for
the first data point for iteration i.

• opt-i-zrxerx.out, where i is an integer: output from the auto_optimizer call
for the second data point for iteration i.

• opt-i-m.out, where i is an integer: output from the auto_optimizer call for the
third data point for iteration i.

• resezm.res: calculated times for the third data point for each iterated value of
m

• orig-kinfile, where kinfile is the kinetics file name: a copy of the original
kinetics file (modifications are made to the kinetics file during the calibration
process)

Figure 15 below compares the simulated and experimental ODTX values for material
ExpTwo. Further refinement of parameters may be done using GLO as described in
Example 1.

FIGURE 15. Simulated ODTX data using the EZM calibrator compared to experimental
data for the material ExpTwo.

 UCRL-TR-225940

32

References

1. Wemhoff A. P. and Burnham A. K. (2006) Calibration Methods for ODTX
Chemical Kinetics for Various Explosives, Lawrence Livermore National
Laboratory, Report UCRL-TR-222032.

2. Burnham A. K. (2000) Application of the Sestak-Berggren Equation to Organic

and Inorganic Materials of Practical Interest, J. Therm. Anal. Cal., Vol. 60, pp.
895-908.

3. Owens C., ed. (2005) LLNL Explosives Reference Guide, Lawrence Livermore

National Laboratory, Report UCRL-WEB-217165.

4. Murphy M. J. (1999) GLO - Global Local Optimizer User's Manual, Lawrence

Livermore National Laboratory, Report UCRL-MA-133858.

5. Wemhoff A. P. and Burnham A. K. (2006) Comparison of the LLNL ALE3D and

AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in
ODTX and STEX Thermal Cookoff Experiments, Lawrence Livermore National
Laboratory, Report UCRL-TR-220687.

